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Finite-temperature orbital state in a ferromagnetic Mott insulator with triply degenerate t2g orbital is inves-
tigated numerically. We employ the quantum Monte Carlo simulation with the loop algorithm. Indications for
conventional staggered-type orbital order are not remarkable down to the lowest temperature to which the
present simulation can get access. Physical parameters monitoring the off-diagonal orbital order, which is
characterized by a linear combination of the �dyz ,dzx ,dxy� orbital-wave functions with equal weights, are not
conspicuous. It is found that an orbital gaplike behavior appears in the uniform orbital susceptibility. This is
supported by a threshold behavior in the staggered correlation function in a calculation with the additional
Ising-type interaction. Some rigorous remarks for the long-range orbital order are also presented.
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Orbital degree of freedom and its strong coupling with
spin, charge, and lattice bring about a variety of fascinating
physical phenomena in transition-metal oxides.1–3 Colossal
magnetoresistance effect observed in vicinity of charge- and
orbital-ordered state in perovskite manganites is a typical
example. Classical aspects of the orbital, e.g., long-range or-
bital orders accompanied with the Jahn-Teller distortion and
their roles on the magnetic exchange interaction have been
fully examined and have been almost settled nowadays. On
the other hand, quantum aspects of the orbital are still unre-
vealed and are expected to open a window for a new research
field in correlated electron system.

Perovskite titanate RTiO3 �R: rare-earth metal ion� is one
of the candidates as a material where quantum orbital phys-
ics is realized. A formal valence of Ti ion is 3+, and one 3d
electron occupies one of the triply degenerate t2g orbitals. In
this Brief Report, we denote, for simplicity, the three t2g
orbitals �dyz ,dzx ,dxy� by �d� ,d� ,d��, respectively. Because of
a weak Jahn-Teller coupling and the novel symmetry of the
t2g orbital-wave functions, quantum aspects of the orbital are
expected to become evident.4–6

In particular, a ferromagnetic Mott insulator with the t2g
orbital degeneracy attracts attention as a simple orbital sys-
tem where spin and charge degrees of freedom are
quenched.7–9 One representative material is YTiO3, where
the isotropic-spin-wave dispersion relation is observed by the
inelastic neutron scattering.10 This result seems to contradict
a long-range orbital order confirmed by several
experiments.11–14 The t2g orbital Hamiltonian in a ferromag-
netic Mott insulator at zero temperature was examined in
Ref. 9. Through the analytical calculations, the two kinds of
long-range orbital-ordered states15 were proposed. It was
shown that these orders set in only at zero temperature due to
strong quantum fluctuation. However, the puzzling spin-
orbital properties in YTiO3 still remain an open issue. Even
in a pure theoretical viewpoint, finite-temperature �T� orbital
states with large quantum fluctuation are unclear.

In this Brief Report, we study the t2g orbital system with
ferromagnetic polarization. Our purpose is to examine finite-
temperature orbital state in the idealized t2g orbital model by
using an unbiased method. We employ the quantum Monte
Carlo �MC� �QMC� simulation with the loop algorithm.
Down to at least around T�0.3J with the coupling constant
J, indications of the conventional staggered-type order, the

off-diagonal orbital order, and the orbital dimerized state are
not conspicuous. Instead, the orbital gaplike behaviors are
found in the uniform orbital susceptibility below around
0.8J.

We start from the Hamiltonian for the �t2g�1 system with
ferromagnetic polarization in an ideal Perovskite lattice. The
generalized Hubbard Hamiltonian in a simple-cubic lattice
with the triply degenerate t2g orbitals is given as

H0 = �
�ij����s

�tij
���di�s

† dj��s + H.c.� + U�
i�

ni�↑ni�↓

+
1

2
U� �

i����

ni�ni�� +
1

2
K �

i����ss�

di�s
† di��s�

† di�s�di��s

+ I �
i����

di�↑
† di�↓

† di��↓di��↑. �1�

We define the electron annihilation operator di�� with orbital
�= �� ,� ,��, spin s= �↑ ,↓� at site i, and the electron transfer

integral tij
���. A pair of the nearest neighboring �NN� sites is

denoted by �ij�. The intraorbital Coulomb interaction U, the
interorbital one U�, the Hund coupling K, and the pair hop-
ping I are introduced. In an atomic limit, there is the relations
U=U�+2I and K= I. We also introduce a number operator
ni�=�sni�s=�sdi�s

† di�s, which has a conservation ��ni�=1.
When the electron transfer integrals through the O 2p� orbit-
als are only taken into account, the transfer integral is written

as a simple form tij
���= t������al�

+�bl�
�. A subscript

l�=x ,y ,z� indicates a direction connecting i and j. We define
two “active” orbitals al and bl, with a finite transfer integral,
and an “inactive” one cl, with no transfer integral. That is,
�ax ,bx ,cx�= �� ,� ,��, �ay ,by ,cy�= �� ,� ,��, and �az ,bz ,cz�
= �� ,� ,��. It is convenient to introduce the pseudospin �PS�
operator for the active orbitals Ti

l= 1
2�s���=�albl�

di�s
† ����di��s

with the Pauli matrices �. The effective Hamiltonian for the
�t2g�1 system which has strong on-site Coulomb interactions
is obtained by the perturbational processes.7,9,16 The virtual
intermediate states are classified by the irreducible represen-
tations for the �t2g�2 states, i.e., 1A1, 1T2, 1E and 3T1. The
lowest energy state is 3T1 with the energy of U�−K. We
assume that spins are saturated in ferromagnetic phase where
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3T1 is only the relevant intermediate state. The Hamiltonian
studied in the present Brief Report is

H = − 2J�
�ij�
�nial

njbl
+ nibl

njal
− �dial

† dibl
djbl

† djal

+ dibl

† dial
djal

† djbl
� +

1

2
�nicl

�njal
+ njbl

� + �nial
+ nibl

�njcl
	
 ,

�2�

where the exchange constant is J= t2 / �U�−K�. This Hamil-
tonian is rewritten by using the PS operator as H
=4J��ij��Ti

l ·T j
l + �nicl

njcl
−1� /4� and is the same Hamiltonian

studied in Refs. 7 and 9. In Ref. 9, the authors proposed the
two orbital orders where the wave functions are the linear
combinations of the �d� ,d� ,d�� orbitals with equal weight,15

which are called the off-diagonal-type orbital orders in this
Brief Report.

Before showing the numerical results, we remark some
rigorous results for the orbital order. There is a unique sym-
metry in this Hamiltonian. In each plane perpendicular to a
direction l, an electron number with the inactive orbital cl,
�i�nicl

, is conserved.6,7,9 The symbol �i� implies a sum of
sites in a plane being perpendicular to l. The Hamiltonian is
invariant under the two-dimensional U�1� gauge transforma-
tion denoted by U�	�=exp�−i	�i�nicl

�. By following the gen-
eralized Elitzur’s theorem,17,18 the physical quantities which
are not invariant under this transformation have a vanishing
mean value. This is proven from a combination of a theorem
about a gauge transformation in a reduced dimension and the
Mermin-Wagner theorem.17,19 By using the theorem, we
prove that the long-range order for the following orbital op-
erator does not appear at finite temperature:

Op
l = �

i

eip·ri�Cadicl

† dibl
+ Cbdial

† dicl
+ H.c.� �3�

for l= �x ,y ,z� with numerical constants Ca and Cb. That is to
say, �Op

l �=0 at finite temperature.
To analyze the Hamiltonian in finite temperature by using

an unbiased method, we employ the QMC method with the
loop algorithm.20,21 There is no negative-sign problem.
Simulations are performed on L3 cubic lattices with the
periodic-boundary condition. The Suzuki-Trotter decomposi-
tion with the Trotter number n is adopted. To check effi-
ciency of the present QMC simulation, we calculate the au-
tocorrelation time22 for the parameter L−3�iTiz

x . The
autocorrelation time grows up monotonically with decreas-
ing temperature and reaches around 750 MC steps at T /J
=0.3. Thus, we adopt, in the following simulation, 2

103 MC steps for thermalization and 104 MC steps for
measurements. We estimate averages and errors for the
physical quantities in ten independent simulations. The sys-
tem size is taken to be L=6–12 in a cubic lattice. Numerical
data obtained in the Trotter numbers n=10, 20, and 30 are
extrapolated.

First, we show results for the staggered-type orbital order.
We introduce the staggered correlation function along direc-
tion l

Ml2 =
4

6n�L3�2�
�
��

i

�− 1�iTiz
l ���
2� �4�

and the staggered orbital susceptibility

�l =
4

�6n�2L3T���
�

i

�− 1�iTiz
l ���
2� , �5�

where � is an imaginary time, Tiz
l ��� is the z component of

the PS operator at �, and �¯� implies the QMC average. In
the classical limit, Ml should be identical to ��lT /L3. Nu-
merical results of Mx are presented in Fig. 1�a�. We have
checked that three Ml for l= �x ,y ,z� coincide with each other
within numerical errors. In L=6 case, Mx shows a broad
peak around T /J=1.5. This peak is, however, smeared out
with increasing L. All obtained values are less than 10% of
the maximum value, i.e., 1. For comparison, ��xT /L3 is also
plotted in the same figure. In high temperatures, Mx and
��xT /L3 merge together for all L as expected. A deviation
between the two is remarkable below T /J�1 where the
quantum effect starts to be effective. In both the two quanti-
ties, there are no divergent behaviors at T=0. Around T /J
�1.5, reduction in the specific heat is also seen �the inset of
Fig. 1�b�	. As shown in Fig. 1�b�, numerical data of �x for all
system size L are scaled by a single curve in a whole tem-
perature range. This implies that the correlation function
�ij����−1�i+j�Tiz

l ���Tjz
l ����� in Eq. �5� is of the order of L3.

That is to say, this correlation is rather short ranged down to
at least 0.3J. The obtained �x remains to be finite down to the
lowest temperature.

This decrease in Ml and �l below T /J�1 may be ex-
plained by a scenario that the orbital order of the off-
diagonal operator proposed in Ref. 9 is developed in low
temperatures; in both the two wave functions claimed in Ref.
9, the correlation function �Tiz

l Tjz
l � for every NN pairs of sites

i and j vanishes. To examine this possibility, we calculate the
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FIG. 1. �Color online� �a� Staggered correlation function Mx for
the orbital PS operator Tiz

x . �b� Staggered orbital susceptibility �x.
For comparison, ��xT /L3 is also plotted in �a�. The inset of �b�
shows specific heat C.
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physical quantities for the off-diagonal orbital operator. In
general, thermal average of the two-point function for an
off-diagonal operator may be calculated by utilizing the im-
proved estimator in the loop algorithm.20,21 In the present
QMC simulation, however, this method is not realistic. This
is because a value of the improved estimator depends on a
shape of the loop since the orbital interaction explicitly de-
pends on the bond direction. Instead, the NN correlation
functions for the off-diagonal operators are able to be calcu-
lated, when these operators are included in the Hamiltonian
explicitly. We calculate the following correlation function for
the off-diagonal operator Qi��l=�x,y,z�Tix

l defined by

GQ =
1

z6nL3�
�

�
�ij�

Qi���Qj���� , �6�

where z=6. For the orbital-ordered states proposed in Ref. 9,
GQ=0.22 and 0.16 for the type-I and type-II orders, respec-
tively. Numerical results of GQ presented in Fig. 2�a� show
weak size dependence and do not show remarkable increase
with decreasing temperature. The obtained values are about
35% of the values expected from the ideal off-diagonal or-
bital orders.

Further information for the off-diagonal orbital order is
obtained by the staggered correlation as a function of dis-
tance,

Gl�m� =
4

6nL3�
�

�
�ij�l

��− 1�i+jTiz
l ���Tjz

l ���� , �7�

where ��ij�l
� represents a sum for the mth NN sites i and j

along direction l. We calculate Gl�m�’s for l=x up to m=4
�see Fig. 2�b�	. With decreasing temperature, Gx�1� and Gx�2�

monotonically increase even below T /J�1 where Ml and �l

in Fig. 1 start to decrease. On the other hand, reductions are

seen in Gx�3� and Gx�4� around T /J=0.8. That is, the de-
creases in Ml and �l are attributed to those in the long-range
correlations of Tiz

l , and short-range correlations still remain
to grow up. The obtained result also suggests that the de-
creases in Ml and �l are not attributed to development of the
off-diagonal orbital correlation; when the correlation for the
off-diagonal operator Qi grows up at low temperature, reduc-
tion in Gl�m� should be remarkable in short range. That is,
Gl�1� and Gl�2�, instead of Gl�3� and Gl�4�, are expected to be
reduced. This expectation is in contrast to the numerical re-
sults in Fig. 2�b�.

Development of the short-range orbital correlation shown
above suggests a kind of the valence-bond state in low-
dimensional quantum magnets.23 However, we are able to
exclude a simple orbital dimer state. We calculate the dimer
order parameter defined as

Dl2 =
16

6n�L3�2�
�
��

i

Tiz
l ���Ti+elz

l ���
2� �8�

with a unit vector el along direction l. Results of Dl show
monotonic decreases with decreasing temperature and in-
creasing the system size, as shown in the inset of Fig. 2�a�.

The following results indicate that the low-temperature
orbital state shows a gaplike feature. The calculated uniform
orbital susceptibility defined by

�u
l =

4

�6n�2L3T���
�

i

Tiz
l ���
2� , �9�

�see in Fig. 3�a�	 starts to decrease around T /J=0.7 and
tends to vanish at low temperatures. Size dependence is seen
below T /J�0.3, but a global gaplike feature in �u

l is not
sensitive to the system size. The temperature, where �u

l starts
to decrease, i.e., T�0.7J, almost coincides to the tempera-
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FIG. 2. �Color online� �a� Correlation function GQ for the off-
diagonal orbital operator Qi. �b� Correlation function Gl�m� for the
orbital PS operator Tiz

x . The system size in �b� is taken to be L
=10. Results in Gx�3� and Gx�4� are multiplied by 5. The inset of �a�
shows the dimer order parameter Dx.
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FIG. 3. �Color online� �a� Uniform susceptibility for the orbital
PS operator Tiz

x . �b� Correlation function Mz calculated in the
Hamiltonian H+H�. The system size and the Trotter number in �b�
are chosen to be L=8 and n=10, respectively. The inset of �b�
shows the correlation function Kx for NN PS operators.
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ture where the staggered susceptibility �x and the short-range
correlation functions Gx�3� and Gx�4� have broad peaks, as
shown in Figs. 1�b� and 2�b�. We also calculate the following
correlation function between the NN PS operators:

Kl = −
1

6nL3�
�

�
i

�Ti
l��� · Ti+el

l ��� − ni
l���ni+el

l �����
�10�

with ni
l=nial

+nibl
. Increasing of the correlation function with

decreasing T, shown in the inset of Fig. 3�a�, suggests a
singlet formation between NN PSs. This gaplike feature is
also confirmed by the following calculation. We add the
Ising-type interaction term into the Hamiltonian �2�. This is
given by

H� = 2J��
�ij�

�4Tiz
z Tjz

z − ni�nj� − ni�nj�� , �11�

where J� is a positive coupling constant. This term promotes
the staggered-type orbital order characterized by Mz. Results
are shown in Fig. 3�b� for several values of J� /J. A threshold
value for J� /J seems to exist; an increase in Mz in low tem-
peratures is not seen for J� /J=0.05 and 0.15. This is consis-
tent with finite values of �x at low temperatures shown in
Fig. 1�b�. These results indicate a possibility that a quantum
gapped state is broken by the Ising-type interaction as well
known in the quantum critical issue.

In summary, we present a numerical study of the finite-
temperature t2g orbital state in a ferromagnetic Mott insula-
tor. Remarkable developments are not seen in the staggered
orbital correlation and the NN correlation for the off-

diagonal orbital operator at least down to T /J�0.3. Short-
range correlation remains to grow up in low temperatures,
but a possibility of the dimerized state is excluded. It is
found that the uniform orbital susceptibility shows a gaplike
feature below T /J�0.7. This result is supported by a calcu-
lation in the model where the Ising-type interaction is added.
One possible scenario for the low-temperature orbital state is
a short-range singlet state where singlet pairs are randomly
distributed in a crystal and/or where rearrangement of pairs
occurs dynamically. A singlet wave function between sites i
and j is ��dial

djbl
�− �dibl

djal
�� /�2 where concerning orbitals

depend on the bond direction l, i.e., a directional singlet pair.
We suppose that the present orbital gaplike feature implies a
qualitatively different orbital state realized at low T from the
long-range orbital order proposed in Ref. 9; due to the gap-
less zero-energy mode, the long-range order in Ref. 9 is pos-
sible only at T=0. To clarify a lower-temperature orbital
state in more detail, QMC simulations in large cluster sizes
with efficient algorithms are necessary. A variational-type ap-
proach based on the above directional singlet assumption
may be also helpful.
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